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Abstract

Reliability is an increasingly pressing issue for High-Performance Computing
systems, as failures are a threat to large-scale applications, for which an even
single run may incur significant energy and billing costs. Currently, applica-
tion developers need to address reliability explicitly, by integrating application-
specific checkpoint/restore mechanisms. However, the application alone cannot
exploit system knowledge, which is not the case for system-wide resource man-
agement systems. In this paper, we propose a reliability-oriented policy that
can increase significantly component reliability by combining checkpoint/restore
mechanisms exploitation and proactive resource management policies.

1. Introduction

High-Performance Computing (HPC) is a critical and strategic computing
infrastructure for both the industrial and scientific sectors [2, 4]. The push
towards Exascale-grade computing systems leads to increased power and energy
requirements for supplying HPC infrastructures. For such kinds of systems, a
20MW power envelope is widely considered an energy efficiency goal. As a
result, any overhead added to the computation, even if relatively low from a
latency point of view, is bound to cause massive energy consumption as well as
unacceptable costs.

One important source of overhead is represented by faults – adverse events
due to system component failures or other issues, that lead to errors in the com-
putation, and therefore to the need to redo all or part of it. As can be easily
understood, in a scenario where such a failure leads to the need to redo a fraction
f of the computation, with a consequent performance loss and additional con-
sumption of energy. Recently, Walker et al. [25] provided an interesting analysis
of the performance-reliability trade-off in HPC systems.
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As HPC platforms evolve towards Exascale, the issue of reliability is becom-
ing increasingly pressing. This is due to the sheer amount of available resources
coupled with the increase in heterogeneity, resulting from the widespread use of
accelerators. Indeed, transient or permanent failures that would seldom occur in
a smaller machine become commonplace at extreme scales, increasing the failure
rates of very large jobs, if the system and the application are unable to cope
with the failure of a single processing element. More specifically, preventing the
occurrence of permanent faults, by improving the hardware components’ relia-
bility, becomes a primary goal if we consider the impact on maintenance effort,
temporary unavailability of resources, and thus costs. In this work, we focused
on permanent faults. In general, we can state that an efficient strategy requires
implementing a mix of reactive and proactive solutions [1]. Reactive methods
monitor the occurrence of failures and try to mitigate their negative effects (i.e.,
the need to kill and restart the application) by exploiting, e.g., checkpoints.
Performing a checkpoint consists of saving the current status of execution of
the application on a “image” stored on a persistent storage device. This means
that, in the case of faults, we can resume the execution of the application from
a safe state, thus limiting the loss of valuable execution time.

Proactive methods, instead, leverage fault probability predictions to allocate
the most reliable resources to jobs that would be more dramatically affected by a
failure. The former approach, which imposes significant checkpoint overheads,
may need to rely on the application cooperation to identify safe checkpoints,
where a process can be frozen and moved without dramatically impacting the
overall application execution [8]. Whereas the latter approach is limited by the
ability to perform correct predictions in an environment where users tend to
overestimate execution times [18].

In this work, we developed a run-time resource management framework to
handle the trade-off between reliability and performance. From the implemen-
tation perspective, we extended the Barbeque Run-Time Resource Manager [3]
with a reliability-aware resource allocation policy (Reliam) and a reliability
monitoring module for the processing resources. The policy relies on a predic-
tive model, which correlates the probability of a fault with the thermal history
of the component. To validate the proposed policy, we employed a simulator
of HPC systems, DCworms, by extending it with suitable thermal and reliabil-
ity models. By employing a representative benchmark application, we obtained
performance and power profiles on a suitably instrumented computing node and
used them to drive the simulation of a multi-node system.

The rest of this paper is organized as follows. In section 2 we review the liter-
ature on resource management and reliability for HPC systems. In section 3 we
introduce the proposed framework, while in section 4 we describe our extensions
to DCworms. Finally, in section 5 we discuss the experimental campaign, and
in section 6 we draw some conclusions and highlight future research directions.
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2. Related Works

Current approaches to reliability management, in HPC systems, are mainly
based on hardware redundancy and checkpoint/restore mechanisms. In case of
faulty executions, the management system can react by moving the workload
to a healthy set of resources and resume the execution from the last safe check-
point images. From the implementation perspective, several improvements have
been proposed to increase the checkpoint efficiency, including incremental check-
point [19] and optimal placement of checkpoints [15]. In general, the drawback
is in fact represented by the overhead introduced by the need to periodically
save on disk a snapshot of the application execution, which could require from
tens to hundreds of megabytes. Among the proactive approaches, we can find
proposals focusing on the optimization of the placement of virtual machines
(VMs), with respect to multiple objectives [7, 26, 27], including balancing the
resource utilization. These can be considered coarse-grained approaches since a
VM can host multiple applications. Alternatively, more fine-grained approaches
include task scheduling and application-level resource allocation policies. Cur-
rently, in HPC, most of the resource management effort is performed by a global
job scheduler, such as SLURM, which allocates computing nodes to jobs at start
time. At this level, some works have attempted to introduce reliability-aware
schedulers [10, 18], while in [6] the authors provide a review of the thermal-aware
task schedulers. Keeping the temperature under control is in fact a key factor in
reducing the occurrence of faults [22]. In this regard, HPC systems usually in-
stall expensive cooling systems to manage the temperature and humidity levels
of the environments. In the embedded systems domains this problem has been
largely explored, often by exploiting reactive control-theory-based approaches.
Mohammed et al. In [17] authors proposed a temperature-aware task scheduler
for many-cores Systems on Chip, relying on task migration, dark silicon and
DVFS to improve system reliability. Huang et al. [11] presented a task allocation
technique for embedded Multi-Processor Systems on Chip (MPSoC) Platforms
aimed at slowing down the wear out of the hardware components, estimating
the lifetime reliability of multiprocessor platforms by using an analytical model.
These works are related to ours in the concept, although they have been in-
tended for a different technology. As for the HPC scenario, relatively few works
regarding resource reliability have been presented. A model-free controller has
been proposed to control the temperature and reliability [21]. Gottumukkala et
al. [9] designed a reliability-aware resource allocation algorithm relying on the
prediction of the time between failure based on the Weibull distribution, in order
to minimize the performance loss due to failures. The authors concluded by stat-
ing how the CPU load and temperature can improve the reliability prediction
accuracy. Moreover, suitable resource management strategies could consider the
level of fault tolerance to optimize a performance metric, considering run-time
reliability predictions.

Our work followed this direction. More in detail, we implemented a frame-
work combining proactive and reactive reliability management strategies, as pro-
posed also in [8]. We extended the BarbequeRTRM framework by introducing
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Figure 1: The core components of the reliability-aware resource management framework.

additional policies and integrating external monitoring components. Accord-
ingly, the framework allows us to monitor at run-time the status of applications
and computing resources, in order to take decisions aiming at minimizing the
application performance loss, while maximizing the lifetime of the computing
resources. Furthermore, the reliability control is backed up by a checkpoint
scheduler able to tune the checkpoint rate per application, with respect to a
user-defined overhead maximum threshold.

3. Run-time Reliability Management

As already introduced, in this work we present a reliability management
framework, based on the extension of the Barbeque Run-Time Resource Man-
ager (BarbequeRTRM). In Figure 1, we sketched the components involved in
the process. The overall strategy is based on mixing proactive and reactive
approaches. The idea in fact is to minimize the probability of failures while pro-
viding support for reacting in case of occurrence, through the well-established
Checkpoint/Restore mechanisms, taking into account also the impact on the
application execution time.

Specifically, the Reliability Monitor gets data from a Hardware Reliability
Model, in charge of estimating the probability of the processing units to fail
(predicted number of FIT: Failures-In-Time). The goal here is two-fold: 1)
to trigger the execution of the policy, in the case of a high probability of fail-
ures, to prevent the occurrence of permanent faults, through suitable resource
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allocation strategies; 2) to drive the per-application rate of the checkpoints. In
this regard, our goal is to find a balance between maximization of the reliabil-
ity and minimization of the overhead due to the periodical checkpoints of the
running applications. The two goals are in a trade-off: higher reliability require-
ments push for performing the application checkpoints at a high rate, but the
consequence is an impact on the overall application execution time. The Dy-
namic Checkpoint Scheduler has been introduced with the goal of defining the
scheduling of the checkpoint processes, on a per-application basis, considering
the actual application requirements, as explained later.

Moreover, the reliability information provided by the model has the two-
fold objective of triggering an immediate re-execution of the resource allocation
policy and providing a picture of the status of the processing resources. This
enables the possibility of allocating the processing resources, according to the
reliability profile, as will be detailed in the next subsection.

3.1. The Reliam Resource Allocation Policy
Reliam is a resource allocation policy whose goal is minimizing the wear out

of the computing resources, improving the reliability of the system and, conse-
quently, of the running applications. The execution of the policy is periodically
invoked in order to allow an adaptive behaviour, dependent on the run-time
status of the hardware components as well as the overall workload. It deals
with the adaptation of the CPU resources allocation according to the actual re-
quirements of the workload, while meeting the system’s reliability requirements,
resorting to task migration and process freezing.

Reliam aims at balancing the trade-off between performance and reliability,
through the combination of two main basic blocks, one consisting in the resource
assignment, i.e., how much CPU resource to allocate, the other in the resources
binding, which will be widely discussed in the following sections.

3.1.1. Resource assignment
The resource assignment component of Reliam aims at minimizing the sys-

tem performance loss caused by the reliability control, analyzed in the next
section. It consists of a series of Proportional Integral and Derivative (PID)
controllers, one for each running application, whose objective is to allocate the
optimal amount of computing resources.

We define the CPU quota Q as the percentage, in terms of time, of CPU
resources of the machine:

Q = C ∗ 100 (1)

where C is the total number of CPU cores, and the observed CPU usage as the
allocated CPU quota effectively exploited by an application during its execution.
The objective of the controller is to assign to each application a CPU quota as
close as possible to the CPU usage it would be observed in the case of unlimited
resources (QI).
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Figure 2: CPU quota allocation control loop.

The main challenge of such a problem is represented by the loss of observ-
ability (QI is not measurable), occurring when the allocation of the CPU quota
gets under-assigned. More specifically, defining QA as the CPU quota assigned
to an application and QO as its observed usage, we can compute the unused
CPU quota, QU , as:

QU = QA −QO (2)

From the equation above, the lack of observability becomes clear. In the
case in which QA is greater than QO, QU represents the over-assignment of
the CPU quota allocation. Conversely, if QU is equal to zero, it is impossible
to infer whether the amount of assigned resources actually matches QI or it
results in an under-assignment. For this reason, we introduce the concept of
over-provisioning, OV P , i.e. a small excess of assignment needed to identify
the assignment as the correct one. More specifically, OV P is a constant value
such that, when 0 < QU ≤ OV P , the value of QA is considered correct.

Moreover, the finite number of resources available in the system is taken into
account by the quota limiter. Once the CPU quota to assign is computed for all
of the running applications, if the total allocated quota exceeds the total avail-
able one, all the allocations get reduced proportionally and the new assignment
is back-propagated to the state of each controller as part of the PID anti-windup
strategy. The resulting control loop is summarized by Figure 2. The idea behind
the adaptive assignment is to provide the running applications with a number
of computational resources such to optimize the use of the available ones, which
might be reduced in number by the action of the reliability control, discussed
in the next section.

3.1.2. Resource binding
The resource binding component of Reliam is the one proactively improving

the reliability of the system. At each invocation, the policy is entrusted with
the ability to take three kinds of decisions:

1. Force to idle some processing units (keep unused to cool down);
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2. Redefine the binding (or mapping) of the processing units (task migra-
tion);

3. Freeze an application execution.

Such decisions are made possible by the presence of a reliability monitor,
able to estimate the probability of failure of each interested processing unit.
After being queried by the policy, the monitor returns a reliability value, in our
case 1/FIT , such that, for each hardware component, the lower the value, the
higher the probability for it to fail. The user can configure a critical value,
such that a suitable management action can be triggered, on the basis of the
predictions of the reliability monitor.

Algorithm 1 Resource binding.

1: sorted_res ← SortComputingResourcesByDescendingReliabilityValue()
2: for all r ∈ sorted_res do
3: if valr < CRITICAL_V ALUE then
4: SetIdle(r)
5: end if
6: end for
7: for all frozen_app do
8: if AmountResumedResources() ≥ QuotaReqsOf(frozen_app) then
9: Thaw(frozen_app)

10: end if
11: end for
12: for all app do
13: if all resources bound to app are idled then
14: Freeze(app)
15: else
16: ComputeResourceQuotaFor(app)
17: end if
18: end for
19: BindAppsToSortedResources()

Algorithm 1 shows how resource binding is performed. After sorting the
computing resources by descending reliability value, Reliam idles the ones ex-
hibiting a critical probability of failure. If, in the current invocation, one or
more resources are resumed, among the ones that were forced to idle for reli-
ability purposes in the previous invocation, the applications previously frozen,
if any, are thawed. The thawing is carried out only if the resumed resources
are enough to cover the quota requirements of the frozen applications: if only a
core is resumed, while two applications are frozen, if they require Q = 100 each,
only one of them gets thawed.

Afterwards, the CPU quota allocation takes place. If in the previous invo-
cation of the policy, an application had been bound solely to processing units,
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currently found unreliable, such application is frozen, otherwise, the PID con-
troller logic exposed in the previous section is actuated. The decision of freezing
an application that is stressing a group of cores ensures that the idling of the
involved resources impacts only the performance of that specific application and
not the entire workload. On the contrary, a CPU quota reassignment could re-
duce the amount of available quota to allocate to the other running applications.
Moreover, the freezing operation prevents the overheating of new CPU cores by
the same application, while the system is already deprived of a share of the
quota.

Finally, non-idled cores are bound to the active applications in descending
order of reliability value. This decision ensures that if the cumulative number
of resources required by the running applications is lower than the number of
available resources, only the most reliable ones will be bound.

3.2. Dynamic Checkpoint Scheduler
In systems in which many parallel executions are in place, one can expect

that each of them, depending on the delivered service, might have different
performance and reliability requirements. For instance, while, for a time-critical
application, avoiding timing failures is a mandatory requirement, in the case of
a batch application, having a recent checkpoint to restart from in the event of
a failure is a much more important requirement. In general, we want to give to
the user the possibility of specifying which requirement dominates.

With the Dynamic Checkpoint Scheduler, we propose an adaptive solution,
providing the possibility to specify an application-specific upper bound on the
checkpointing overhead. This is the maximum performance loss tolerated by the
application, expressed in terms of percentage over the overall execution time.
The Application Profiling module collects statistics at run-time on checkpoint
and execution times, that both the resource allocation policy and the checkpoint
scheduler can exploit. The Dynamic Checkpoint Scheduler, therefore, aims at
scheduling the checkpoints on the basis of both user requirements and hardware
reliability.

At application launch, the user is required to set the maximum checkpoint
overhead tolerated by the application, expressed as the ratio of checkpoint and
application code execution times. If the setting of the ratio is not provided, a
default value is considered. Therefore, the checkpoints get scheduled as sum-
marized by Algorithm 2.

For each application, the scheduler computes an estimation of the check-
point latency based on the arithmetic mean of the previous dumps. Hence, the
expected overhead is computed. The routine considers the ratio between the
cumulative amount of time spent performing checkpoints and the total time
elapsed since the start of the application. This choice allows us to reduce the
impact of the variance on the computation of the overhead. Finally, if the ex-
pected overhead is lower than the specified one, the checkpoint is launched and
the statistics are updated.
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Algorithm 2 Dynamic Checkpoint Scheduler pseudo-code.
while True do

app ← GetNextRunningApplication();
meanChkTime ← GetCheckpointTimeMean(app);
elapsedTime ← GetElapsedTimeSinceStart(app);
totalTime ← elapsedTime + meanChkTime;
performedChk ← GetNrPerformedCheckpoints(app);
totalChkTime ← (performedChk +1) * meanChkTime;
expectedOverhead ← totalChkTime/totalTime;
if expectedOverhead ≤ specifiedOverhead(app) then

Dump(app);
UpdateStatistics(app);

end if
end while

4. Large Scale Simulation with DCworms

After discussing the design of our framework, as well as the tuning of the
policy parameters on the resource manager running on a single-node system,
we move our focus on validating the approach on a larger scale. For the exper-
imental setup, we relied on an HPC system simulator: DCworms [13]. More
specifically, we extended the current version of the simulator, by adding thermal
and reliability models, other than re-implementing the policies previously tested
on the single-node system configuration.

DCworms is a Data Center Workload and Resource Management Simulator,
developed by the Poznan Supercomputing and Networking Center, which allows
the modelling of large-scale computing systems and workloads together with
the evaluation of various management strategies. It is designed as an object-
oriented, plugin-based, event-driven simulator. Thus, it provides easy extension
capabilities that allow us to plug in the reliability policies, as well as to integrate
the necessary measurements based on performance counters. Essentially, a plu-
gin will be activated when an event fires, such that we can inspect the state of
the simulation to retrieve the counters, compute the next actions based on the
policy, and then apply them. Additionally, DCworms supports the inclusion of
a wide range of performance and energy models (by using plugins) that allow
describing the behaviour of the evaluated system. They enable the estimation
of corresponding factors like power, temperature, and processors’ utilization,
by playing an important role while performing management actions. For this
work, DCworms has been extended to support checkpoint/restore mechanisms
which can be characterized in performance, and with reliability monitors and
fault injectors.

4.1. Thermal Model
An important extension to DCworms is the integration in the simulator of

a custom thermal model capable of simulating core temperatures, enabling the
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assessment of reliability metrics that depend on temperature, thus aligning DC-
worms to recent trends in HPC modelling and simulation [12]. A thermal model
suitable for HPC infrastructure simulation needs to satisfy several requirements
which led us to design a custom solution. First of all, the need to simulate a
large number of cores and CPUs to model an HPC infrastructure poses stringent
performance requirements on thermal simulations. Moreover, since for similar
performance considerations the simulation of the cores is coarse grain, current
HPC simulators, such as DCworms, do not provide enough micro-architectural
statistics to be able to reconstruct the power dissipated in each functional unit
of every core, in order to construct the fine-grain power information that is
needed as input by existing thermal models [24].

Both requirements suggest that a suitable solution could be found in the
form of coarse grain thermal models, that focus on capturing only the main
dynamics of the thermal phenomena, have low demands in terms of the input
power level of detail, and simulate at high performance while providing sufficient
accuracy to compute reliability metrics.

In this work, we have developed, starting from the theoretical model of [24],
a coarse-grain thermal model for a quad-core CPU. This model takes as input
the power dissipated by each of the four cores, computed by a suitable power
model, and produces as output an approximation of the temperature of each of
the cores, taking into account the core coupling through the heat spreader and
heat sink. Although the model does not simulate the entire chip floorplan at a
high granularity, it is nonetheless capable of reproducing with sufficient accuracy
both the fast thermal dynamics [14] caused by the small thermal capacitance
of the silicon die coupled with the non-negligible thermal resistance to the heat
sink, as well as the slow thermal dynamics of the heat sink itself.

The parameters of the designed model have been fitted from experimental
data on an Intel Core-i5 6600K, which has been instrumented for the purpose
as follows. First of all, all thermal control policies except for the hardware
thermal shutdown have been disabled, in order to capture thermal transients
without policies unexpectedly altering the CPU voltage or frequency. This in-
cludes both the Thermald thermal control policy that is part of current Linux
distributions, as well as the turbo boost policy that is part of the processor. An
instrumentation program reading the core temperatures directly from the CPU
Model-Specific Registers (MSRs) at a 200Hz sampling rate has been used to
sidestep the rate limiting imposed by the Linux kernel on reading temperature
information. This proved vital to correctly capture the fast thermal transients.
Power measurements have instead been performed by means of a shunt resistor
inserted in the CPU power supply path, connected to a National Instruments
acquisition board. The acquired information, consisting of step responses ap-
plied to the four cores by means of microbenchmark programs designed to cause
a constant and known power consumption has been used to fit and subsequently
validate the thermal model. Figure 3 shows one experiment, consisting of the
temperature of the last core during a sequence of step responses applied to cores
1 through 4 in sequence. As can be seen, from 0 to 300s the model can correctly
reproduce the effect of thermal coupling through the heat sink caused by the
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Figure 3: Comparison of the temperature estimate produced by the developed thermal model
with experimental measurements.

heating of the other cores, while from 300 to 400 seconds temperature increases
further as also this core is dissipating power.

Based on the performed validation, the developed thermal model provides
an average error lower than 2◦C, and a maximum error of 9◦C, while taking less
than 1µs to simulate a quad-core CPU for 5ms.

4.2. Reliability Model
In this work, we focused on permanent faults, which are a major issue in HPC

data centres due to the large number of machines which, in turn, decreases the
total Mean-Time-To-Failure (MTTF) of the whole cluster. Moreover, they dom-
inate the overall failures in HPC [23]. Reducing the core temperature is a key
goal to increase the reliability of the hardware [28]. Therefore, we implemented
in DCworms the same reliability model used in the RECIPE project (see Figure
1) for the real system. This model needs to collect data on the temperature of
the processors, in order to predict the probability of failures. The output of the
thermal model, described in the previous Section 4.1, is used as input for the
reliability model. The reliability model requires only coarse-grain temperature
data, from the spatial perspective. This is an advantage, as it matches the capa-
bilities of the ubiquitous on-chip temperature sensors made available by modern
CPUs, making the policy easily implementable in a real HPC infrastructure.

The reliability model relies on the well-established Arrhenius’ equation, which
makes explicit the relationship between the time to failure of a component (pro-
cessor in this case) and its temperature:

AF = A · exp
[
−∆H

k
·
(

1

Tcurr
− 1

Tbase

)]
The model estimates the acceleration factor (AF ), representing the variation of
time to failure due to the variation of temperature from the test temperature
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Tbase to the current temperature Tcurr. The parameters include the Boltzmann
constant (k = 8.617 · 10−5eV/K), the activation energy (∆H), which depends
on the material of the component and the type of failure, and a scaling factor
A. The parameter for the Intel Skylake processor are [20]: A = 1 and ∆H =
0.7eV . Moreover, the variation of temperature has been considered in terms of
additional stress, introduced by the current temperature (Tcurr), with respect
to a baseline value Tbase = 55◦C = 328.15K. For the setup based on DCworms,
Tcurr is provided by the thermal model. From the Arrhenius’ equation, we can
derive the following relation with the average failure rate [5]:

λreal = AF · λexpected

The value λexpected is provided by the manufacturer. Therefore, reducing the
core temperature (Tcurr) makes the acceleration factor AF smaller and, in turn,
the fault rate λreal lower.

5. Experimental Results

In the experiments, we show how the applications and the overall hardware
system can benefit from a run-time adaptive approach, with respect to static
or application-driven ones. Finally, by exploiting DCworms, we provide an
evaluation of the proposed system management strategy in terms of scalability
over a multi-node HPC infrastructure. Furthermore, it will be shown how the
reliability-performance trade-off is taken into maximum consideration through
the machine and application awareness of the policy and by the possibility of
setting an upper bound on the overhead due to the checkpoint task.

5.1. Application Characterization
To drive the experiments, we characterized the Cloverleaf mini-application [16]

from the UK Mini-App Consortium, which employs an explicit second-order
method for the resolution of compressible Euler equations, a representative ap-
plication for the HPC domain. We collected power traces and performance
results on the same quad-core machine used for the Thermal model in sec-
tion 4.1, on both the serial and OpenMP implementations of Cloverleaf. These
data are used to drive the thermal model and the simulation of the execution
in DCworms.

5.2. Reliam Evaluation
We performed two sets of experiments to test the effectiveness of Reliam.

The first one consisted of the characterization of the policy completion time,
compared to the baseline behaviour. In the second one, we evaluated the ef-
fectiveness of the reliability decisions of the policy on a large scale. For this
purpose, we exploited DCworms in order to simulate a multi-node parallel sys-
tem.

12
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Figure 4: Comparison between mean completion time of an invocation of the Reliam and the
baseline policy, varying the number of active applications.

5.2.1. Execution time
For the characterization of the Reliam policy execution time, we used the

workstation already exploited for the thermal model characterization. We col-
lected the completion time of Reliam and a baseline policy, consisting of an
assignment of a fair amount of CPU quota, without considering the binding
problem. We considered several scenarios, characterized by different amounts
of active applications to schedule (from 1 to 16). We used the Fluidanimate
PARSEC benchmark as workload, launched in a single-thread configuration, to
process 500 frames of the native input set, for a running time of 100 seconds.
Figure 4 shows the mean values and standard deviation of the completion time
of a single invocation of the two policies, according to the different scenarios.
We repeated the experiment 50 times for each scenario. From the figure, one
can observe how the two curves have a logarithmic progression, although the
slope of Reliam is slightly bigger than the baseline one. The maximum differ-
ence encountered in the tested cases consists of a ∼55-60% higher execution
time for the Reliam policy, in the scenarios characterized by the utilization of
half of the computing resources (8-9 applications). Reasonably, this is due to
the fact that such scenarios determine the highest number of CPU cores being
affected by thermal variations. On the contrary, this execution penalty drops
to 17% for the scenarios characterization by high utilization of resources (14-16
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applications). In such cases, the number of thermal variations is reasonably
lower, since the fully utilized CPUs are at a homogeneously high temperature.
In any case, the policy execution time does not represent a noticeable latency
for the workload execution times, since performed in the background. In gen-
eral, the results show that Reliam is able to actuate a reliability-aware adaptive
CPU allocation in a time span of the order of a few milliseconds in all the tested
cases, providing a prompt response to the applications and sensible scalability
for the system.

5.2.2. Large-scale thermal results
The following experiments aimed at testing our approach at scale. In this

regard, we performed two experiments employing DCworms to simulate a large-
scale system to assess the impact of the Reliam policy on both homogeneous
and heterogeneous clusters.

In the homogeneous computing scenario, we evaluated the impact of the
resource-binding component of the policy by simulating a cluster of 128 nodes,
each with 64 processors. The system is subject to a workload of 1024 jobs with
randomly generated characteristics (in terms of the number of tasks and resource
consumption for each task). We monitor the temperature evolution for each
processor, as well as the estimated failure rate (FIT), when using the baseline
configuration, without the Reliam policy, and when using a configuration that
enables the Reliam policy.

Applying the policy increases the execution times, but offers better temper-
ature and FIT trends. In fact, the interesting result is the reduction in the
temperatures of the processors (temperatures are 16◦C lower on average) and
the reduction of FIT of the processors of 26%. In this execution, the total exe-
cution time increases by ∼10%. Looking at the impact on performance, under
specific circumstances, the Reliam policy can reduce the overall execution time.
The probability of this occurrence grows as the task execution times and failure
probability increase, since this increases as well the probability of a task having
to be restarted due to an actual failure. It is possible to understand the outcome
by comparing Figures 5a, 5b, 6a, and 6b that show the temperatures and the
FIT values of the baseline and of the experiments.

The second example demonstrates the results obtained by applying our pol-
icy to a cluster of 128 nodes of 16 processors and 1 GPU. The policy, also in
this scenario is able to achieve a reduction of the processors’ temperatures of an
average of 15°C and a reduction of FIT of the processors of 27%, in return for a
relatively minor execution time increase (9%). Figures 7a, 7b, 8a, and 8b show
the trends of temperatures and FIT during the experiments in one node.

5.3. Dynamic Checkpoint Scheduler Evaluation
In this section, we report the evaluation of the overhead due to the Dy-

namic Checkpoint Scheduler, introduced in Section 3.2. For the execution of
the Dynamic Checkpoint scheduler in the resource management framework, we
used the same system exploited for testing the overhead characterization of the
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(a) Baseline configuration.

(b) Reliam enabled.

Figure 5: Evolution of temperature in a node with 128 nodes of 64 processors running the test
workload in the configuration with the Reliam policy. Temperatures are reported in centigrade
degrees. Only 200 randomly chosen processors are shown (the same processors in both).

Reliam policy. We ran the pseudo-application BT of the NAS Parallel Bench-
mark Suite considering two different workloads, the first one characterized by a
memory occupancy of 0.8GB, and the second one of 12.8GB. The goal of the
experiment was to observe the cumulative overhead obtained using the Dynamic
Checkpoint Scheduler, considering both checkpoint overhead and re-execution
time in the case of occurrence of failures (Tfailure).

Defined Texc_tot, Tchk_tot and Trexc(t), respectively, the total time spent
executing the application, the total time spent performing checkpoints and the
time spent re-executing the application in case of failure, we define Tfailure as
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(a) Baseline configuration.

(b) Reliam enabled.

Figure 6: Evolution of the FIT for the same scenario reported in Figure 5.

follows:


TTOT = Texc_tot + Tchk_tot

Tfailure =

∫ TTOT

0

λ · Trexc(t)dt
(3)

We computed the arithmetic mean of the checkpoint times obtained during
the execution of the benchmark, observing that the standard deviation never
exceeds the 10% of the mean. This result allowed us to re-write, without any
loss of information, Tchk_tot as n ∗ Tchk_mean, where n is the total number of
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(a) Baseline configuration.
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(b) Reliam enabled.

Figure 7: Evolution of temperature in a single node running the test workload in the baseline
configuration (a) and in the configuration with Reliam enabled (b). Temperatures are reported
in centigrade degrees (◦C)

performed checkpoints, and to do the same approximation also for the time
passed between two consecutive checkpoints (TTOT = n ∗ Tperiod).

Defined tstart_exci and tend_exci as the starting and the ending time of the
execution of the application code in period i, we know that:

tend_exci − tstart_exci = Tperiod − Tchk_mean = Texc_mean ∀i (4)
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(a) Baseline configuration.
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(b) Reliam enabled.

Figure 8: Evolution of the FIT for the same scenario reported in Figure 7.

This result allows us to compute Tfailure as:

Tfailure =

∫ TTOT

0

λTrexc(t)dt (5)

=

n∑
i=1

∫ tstart_exci

tend_exci

λ tidti (6)

=

n∑
i=1

λ
t2i
2

∣∣∣tend_exci

tstart_exci

(7)

= nλ
E[Texc]

2

2
(8)
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(a) Memory occupancy: 0.8GB.
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(b) Memory occupancy: 12.8GB.

Figure 9: sum of Tfailure and Tchk_tot normalized on application total execution time without
failures.

Figures 9a and 9b show the sum of Tfailure and Tchk_tot normalized on
the application code total execution time in absence of failures. We selected
six different checkpoint overhead upper bounds (k) and observed the trend of
the total overhead varying the failure rate (λ) of the system, expressed in FIT
(hour basis). The experiments show that, for a smaller workload, Figure 9a,
the total overhead is always proportional to the choice of k, for all considered
values of λ. However, Figure 9b shows that, for bigger workloads, the previously
observed trend inverts when the system is highly unreliable (λ ≈ 10−1). This
happens because, if the failure rate is high, re-execution times may impact the
performance more than the overhead of a more frequent checkpoint. Moreover,
the bigger the workload, the lower the failure rate at which the trend inversion
is found. It follows that, in the case of significant workloads, the choice of k
must be consistent with the reliability level of the system.

By looking at the results reported in [9], for example, we can approximately
compute that their methodology set the reliability of the system in the 10−2 ≤
λ ≤ 10−1 range. Assuming to run, on the same system, a workload that is
compatible with the one we used to profile the overhead shown in Figure 9b,
we can state that by setting a value k ≈ 0.05, we can get the same achievement
with an execution overhead ≤ 5%. Higher values of k would dramatically delay
the finish time of the workload execution.

6. Conclusion

In this work, we introduced a reliability-aware approach to the resource
management of HPC systems, integrating resource allocation policies, monitor-
ing interfaces and models. Our work introduces fine-grained control actions,
in coordination with the usage of the checkpoint/restore mechanism. In this
regard, our approach aims at keeping under control the overhead introduced by
the checkpoint operations, by monitoring the time required with respect to the
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overall execution time of the applications and tuning the checkpoint period on a
per-application basis, considering the maximum overhead value set by the user.
Furthermore, we characterized the overhead introduced by the execution of the
management policy itself, showing the sustainability of a real multi-core-based
system. The results, obtained by deploying the framework on a simulated HPC
infrastructure, have shown how we are able to achieve a significant reduction
of temperature, with a consequent dramatic impact on the reliability of the
processing resources, and thus of the overall system.

In future developments, we aim at including the FIT estimation in the check-
point rate tuning, such that, for tight reliability predictions, the dynamic check-
point scheduler could also consider the restore overhead while evaluating the
checkpoint rate value to set.
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